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Goal: 
Find Low-Rank 

Structure in Data
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• Tensor Decompositions

Tensors 

• Quasi-Tensor Decomposition

• RKHS

Quasi-Tensors

• Experimental Results

Aligned versus Unaligned Data



Tensors
And tensor decomposition
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From Matrix to Tensor Decomposition
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CP Model: Sum of d-way outer products, 
useful for interpretation

Tucker Model: Project onto high-variance 
subspaces to reduce dimensionality

CANDECOMP, PARAFAC, Canonical Polyadic

HO-SVD, Best Rank-(R1,R2,…,Rd) decomposition

Other models for compression include 
t-SVD, tensor train, etc.

Singular value decomposition (SVD), 
nonnegative matrix factorization (NMF), 
plus connections to Proper Orthogonal 

Decomposition (POD) 

Viewpoint 1: Sum of outer products, 
useful for interpretation

Viewpoint 2: High-variance subspaces, 
useful for compression



• Fluid flow DNS
• Single computational experiment produces 

terabytes of data
• Storage limits spatial, temporal resolutions
• Difficult to analyze or transfer data

• Other applications
• Electron Microscopy Experiments
• Telemetry Experiments
• Cosmology Simulations 
• Climate Modeling 

• Can be compressed using tensor 
decompositions

Simulations Produce Tensors!
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5003

400

3D Spatial 
Grid

Time

Variables11

4 TB  (double precision)

5.5 × 1011 elements



4 TB Combustion Simulation Compression
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Original 𝜖2 = 10−4

410X Tucker Compression
13 sec. compute time 

on 400-node supercomputer (2019)

200,000X Tucker Compression
6 sec. compute time 

on 400-node supercomputer (2019)

𝜖2 = 10−2

sandialabs/TuckerMPI (github.com)

5003 × 400 × 11

https://github.com/sandialabs/TuckerMPI


CP Tensor Decomposition
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Factor Matrices

defined by

Rank-𝑟 CP ModelData



Tensor Compressed Fluid Flow Simulation
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Fluid Flow Data
80 x 120 grid

250 timesteps
Storage: 6 × 106 entries

Tensor Compressed
CP components: 25

Storage: 2 × 104 entries

Compression ratio: 400

Bi-dimensional flow past a circular cylinder at Reynolds’ number Re = 100



Alternating Least Squares (CP-ALS)
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Tensor Compressed Fluid Flow Simulation
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Fluid Flow Data
80 x 120 grid

250 timesteps
Storage: 6 × 106 entries

Tensor Compressed
CP components: 25

Storage: 2 × 104 entries

Compression ratio: 400

Bi-dimensional flow past a circular cylinder at Reynolds’ number Re = 100
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1st Spatial Mode Components



10 Sep 2024 Tensor Decomp meets RKHS @ MORe 24 13

2nd Spatial Mode Components
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Temporal Mode Components



Quasi-Tensors
RKHS and quasi-tensor decomposition
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Quasi-Tensor: 𝑚 × 𝑛 × ∞
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• Quasi-tensor: One or more 
modes of tensor are 
continuous

• Borrowed from quasi-matrix: 
𝑛 × ∞ array of functions 
(Townsend & Trefethen, 2014)

• Can be converted to a tensor 
by evaluating the functions at 
finitely many observations 
(generally only have this)

• Dynamics/smoothness can 
be important and may want 
to preserve it in some fashion



Quasi-Tensor → Tensor
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In practice, can only observe 
real-world quasi-tensor at 
discrete vales of 𝑥



Synthetic Data Example
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Rank-3 Factorization by CP-ALS
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𝐚1

𝐚2

𝐚3

𝐛1

𝐛2

𝐛3

𝐜1

𝐜2

𝐜3

If sampling frequency is high enough in 
continuous mode, CP will generally pick up 
the smoothness without help!

But what if the frequency is lower?

CP-ALS (nonnegative)



What happens with fewer observations?

10 Sep 2024 Tensor Decomp meets RKHS @ MORe 24 21

15 aligned, unevenly-spaced 
noisy samples per function



Few Observations ⇒ Jagged Components
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Handing Smooth Modes
CP Tensor Decomposition with Hybrid Infinite and Finite Dimensional Modes
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CP Hybrid Infinite & Finite (HIFI) Decomposition
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Factor Matrices

defined by

Rank-𝑟 CP ModelQuasi-Tensor

𝑚 × 𝑛 × ∞

Factors in infinite-dimensional modes are smooth functions!



Quasi-Matrix
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Collection of 𝑟 functions:

Evaluation at a vector to create matrix:



Fitting CP-HIFI Decomposition

10 Sep 2024 Tensor Decomp meets RKHS @ MORe 24 26

Factor Matrices

defined by

Rank-𝑟 CP Model
Data



Finite-Dimensional Data
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Factor Matrices

defined by

Rank-𝑟 CP Model
Data

grid sampled 
at design points 

𝐯 = 𝑣1, 𝑣2, ⋯ , 𝑣𝑝
𝑇



Options for Imposing Smoothness

• 𝐂 is a matrix, but enforce smoothness
• Linear Combination of Splines: 𝐂 = 𝐒𝐖 where 𝐒 ∈ ℝ𝑝×𝑞 is matrix of smooth b-splines and 𝐖 ∈ ℝ𝑞×𝑟 

is weight matrix (Timmerman & Kiers, 2002)

• Second-difference Operator Regularization: 𝐋2𝐂 2 where 𝐋2 is second-difference operator of size 
𝑝 − 1 × 𝑝 (Martinez-Montes, Sanchez-Bornot, Valdes-Sosa, 2008); aka Whittaker smoothing

• 𝑪 is a quasi-matrix
• Gaussian Process Factor Analysis (GPFA, matrix factorization):  Draws factors from an associated 

Gaussian process

• Functional Principal Component Analysis (FPCA, matrix factorization): Uses Karhunen–Loeve 
Decomposition (i.e., continuous version of SVD)

• Chebfun: linear combination of Chebyshev polynomials (matrix decomposition: Townsend & Trefethen, 
2013 & 2015; Tucker decomposition: Hashemi & Trefethen, 2017) 

• Reproducing Kernel Hilbert Space (RKHS): Used in Tucker tensor decomposition (Han, Shi, Zhang, 
2023)
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Reproducing Kernel Hilbert Space (RKHS)
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• Want to find smooth functions but impractical to 
optimize over all functions

• Restrict to an infinite-dimensional Reproducing 
Kernel Hilbert Space or RKHS denoted as ℋ𝑲 with 
kernel

• Kernel is positive semidefinite (PSD) which means 
that for any 𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑝

𝑇
, the matrix 𝐊 ≡ 𝑲(𝐯, 𝐯) 

is positive semidefinite



Kernel Quasi-Matrix and Matrix

10 Sep 2024 Tensor Decomp meets RKHS @ MORe 24 30

Design points: 

Given a kernel: 

Kernel 
Quasi-matrix: 

Kernel Matrix: 



Representer Theorem Translates RKHS 
Problem to Finite-Dimensional Space

31

For a set of 𝑝 observations of the form {𝑣𝑖 , 𝑦𝑖 ≡ 𝑓 𝑣𝑖 } and 𝜆 > 0, we can 
consider the following regularized regression problem:

The representer theorem tells us that the optimal solution in the 
infinite-dimensional Hilbert space has the following finite form:

10 Sep 2024 Tensor Decomp meets RKHS @ MORe 24



RKHS Problem in Practice

32

• Given 𝑝 observations {𝑣𝑖 , 𝑦𝑖 ≡ 𝑓 𝑣𝑖 }
• Choose p.s.d. kernel 𝑲 and regularization parameter 𝜆 > 0
• Compute 𝐊 𝑖, 𝑗 ≡ 𝑲(𝑣𝑖 , 𝑣𝑗)

• Solve the following problem for 𝐰 ∈ ℝ𝑝:

• Final solution is
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Representer Theorem Enables Us to 
Optimize in Finite-Dimensional Space
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Finite-Dimensional Data
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Factor Matrices

defined by

Rank-𝑟 CP Model
Data

grid sampled 
at design points 

𝐯 = 𝑣1, 𝑣2, ⋯ , 𝑣𝑝
𝑇



Alternating Least Squares (CP-HIFI-ALS)
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15 Aligned Observations per Function
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15 aligned, unevenly-spaced 
noisy samples per function



15 Aligned Observations: CP vs CP-HIFI
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Unaligned Observations
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Data Need Not Always Aligned
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⋮

Measurements may be 
taken at different times 
for different subjects, 

e.g., patients coming in 
for blood work

Experimental setup may 
vary by site, e.g., 

equipment to measure 
weather settings might not 

all use same interval

An irregular grid!



Unaligned Observations
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⋮

Design Points

(Partially) Observed 𝒎 × 𝒏 × 𝒑 Tensor

Observed Points

Norm on Only Observed Points



Alternating Least Squares (CP-HIFI-ALS)
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12 Aligned Observations per Function
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12 aligned, unevenly-spaced



12 Aligned Observations: CP vs CP-HIFI
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12 Aligned Per Function + 1 Extra Data Point
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12 aligned, unevenly-spaced
plus 1 extra point  for (2,2)



12 Aligned + 1 Extra: CP vs CP-HIFI
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12 Aligned + 1 Unaligned per Function
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12 aligned, unevenly-spaced
plus 1 extra point  for each (𝑖, 𝑗)



12 Aligned + 1 Unaligned: CP vs CP-HIFI
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12 Unaligned Points Per Function
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12 unaligned, unevenly-spaced
points per (𝑖, 𝑗)



12 Unaligned: CP vs CP-HIFI
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12 Unaligned: True vs CP-HIFI
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Conclusions
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Conclusions & Future Work

•Tensor data ubiquitous in modeling

•Tensor decomposition yields orders-of-magnitude reduction

Tensors & Tensor Decomposition 

•Quasi-Tensors have one or more “continuous” modes

•Decomposed with functions rather than vectors

•Variety of methods to yield functions (or function-like vectors)

•RKHS = principled way to learn smooth functions

•Aligned versus unaligned data

Quasi-Tensors & Decomposition

•POD with tensor rather than matrix decomposition?

•Learning functions rather than vectors (in any decomposition)?

•Assimilating unstructured grid data?

Connecting with ROM: Some Ideas…

Tensor Decomposition Meets RKHS: Efficient Algorithms for 
Smooth and Misaligned Data, http://arxiv.org/abs/2408.05677 

http://arxiv.org/abs/2408.05677
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Two Books and a Channel

latex-graphics.com 
Print-on-demand now available and 

coming soon to Amazon.com

mathsci.ai/tensor-textbook 
PDF free online and coming soon 
from Cambridge University Press 

https://www.youtube.com/
@UnlockingLaTeXGraphics 

https://latex-graphics.com/
https://mathsci.ai/tensor-textbook/
https://www.youtube.com/@UnlockingLaTeXGraphics
https://www.youtube.com/@UnlockingLaTeXGraphics
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