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We consider the reality of deploying Al in safety-
critical systems such as autonomous vehicles, medical
diagnoses, and weather forecasting. Our discussion is
grounded in the mathematical nature of Al systems,
including how an AI's mathematical properties relate
to its benefit and risk profile. Benefits include
the ability to learn models from data even when
no physical model exists, increased automation,
and enhanced speed compared with traditional
approaches. Risks of Al include its opaque (mis-)
understanding of the world, failures on out-of-
distribution (OOD) inputs, its insatiable appetite
for data and compute, and the ongoing challenge
of aligning the AI's objectives with human values.
Such risks are potentially manageable with clear-eyed
expectations, and our hope in this work is to clarify
what can be expected.

1. Introduction

About a decade ago, a standard blood test indicated that
something was wrong with my liver. My primary care
physician had me go through a wide battery of expensive
tests and see a number of specialists. By and large, the
specialists focused on the data from the tests, ignoring the
broader context of my overall good health. Thankfully, I
finally lucked upon a gastroenterologist with a different
approach. The first thing he said to me was,

“You are not a number.”

Starting from that basis, we quickly ruled out serious
liver disease and ultimately determined the cause of my
abnormal blood test results to be a supplement that I had
recently been prescribed.

The moral of the story is that few important things in
life reduce down to merely data. Whenever data fails us,
we tend to blame the problem on not having enough. The
reality is that data can never provide a complete picture
of a complex system, and I would argue that its utility is
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Figure 1. Examples of safety-critical systems

inversely proportional to the faith we put into it. Data and models built using it are undoubtedly
important for insights into complex systems and may go so far as to mimic human responses, but
true understanding requires human insight.

In this piece, I consider Al in the context of safety-critical systems. To ground our discussion,
we use the following examples shown in fig. 1:

* Autonomous vehicles self-driving in complex environments
* Medical image analysis reading X-rays, MRIs, and CT scans
* Weather forecasting of severe weather events such as hurricanes and tornadoes

These examples are in roughly decreasing order of potential risk in terms of human life and
property damage. For instance, a self-driving car that misses a stop sign or sees one where it
is not could cause a serious accident resulting in severe injury and loss of life. An AI misdiagnosis
that misidentifies a cancer as something innocuous can likewise lead to loss of life; conversely,
an incorrect positive result can cause a patient to undergo unnecessary tests and procedures.
Incorrect Al weather forecasts can either fail to provide advance warning of life-threatening
storms, which can lead to loss of life, or lead to unnecessary evacuations, which can be costly
and disruptive. I stress that these are all examples where the current state of the art is hardly fail
proof, making them good candidates for Al enhancement.

Let me start off my saying that, despite the earnest promises from purveyors of Al, claims of
imminent artificial general intelligence (AGI) are pure fantasy. Part of the goal of this article is to
provide a bit of mathematical insight into why this is the case. I will review commonly used Al
methods and explain their mathematical formulations at a high level. The bottom line is that Al
systems are mathematical functions, i.e., a sequence of specific predetermined operations. Some
of these are calls to random number generators, which is what may make it seems different than
classical methods. What Al is good at is matching what is in its training data (often produced by
humans), which can make it seem like human thought and reasoning underlies its output.

On this basis, it might seem that the obvious answer to the question posed in the title (is
Al safe?) is no, since anything less than human-level reasoning is inadequate for safety-critical
applications. To the contrary, Al has important benefits. It can learn mathematical models of data
in domains where we have insufficient physical laws to guide us, it can be much faster than
traditional methods (either human or computational), and it can increase the automation of tasks
that are tedious and error prone.

However, Al also comes with major barriers and risks that have to be accounted for. Advanced
Al systems such as neural networks and transformers are notoriously inscrutable, meaning that
it is never apparent if what it has “learned” is what you thought it learned. Any purported
reasoning ability of an Al system is illusory. Even the most advanced systems are beguiled
by elementary tasks such as counting the number of times a specific letter appears in a word
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(counting occurrences of in the word “strawberry” is an infamous examplel). Even if an Al
system learns what you want, it is still only as good as its training data and is not reliable in novel
situations. If a new input is far away from the training data, then we say it is out of distribution
(OOD). Even detecting OOD inputs is a largely unsolved problem, and continual monitoring
is required to discover them. Preventing OOD errors means that AI models require massive
amounts of training data (and consequently more compute) for training and deployment. Indeed,
most problems in Al are blamed on insulfficient data or compute; however, it is becoming clear
that there are limits to what data and compute can achieve. Another major barrier that deserves
increased attention is the challenge of encoding human values and intent into the training of an Al
system (the so-called alignment problem) [1]. As it is impossible to perfectly encode human values,
tweaking the alignment is a Sisyphean task. This is where Al engineers invest a significant amount
of effort, and major AI improvements have resulted from novel approaches to formulating the
metrics to measure the alignment.

So, is Al safe in safety-critical systems? The answer is nuanced. Deployed with the idea that it
is self-aware and learns on the fly, Al is unquestionably dangerous. Understanding its limits and
the continual maintenance that is required, Al can make safety-critical systems safer. To make this
case, we first discuss what we mean by artificial intelligence (Al) basing this on a mathematical
viewpoint that emphasizes its functional form, i.e., that it can ultimately be written as a set of
mathematical rules and implemented as a computer program. Next, we expand on the potential
benefits and limitations of Al outlined above. Finally, we conclude with recommendations for
the use of Al in safety-critical systems, where it can be useful so long as its limitations and need
for continual maintenance are clear to those responsible for ensuring system safety. We stress
repeatedly that no amount of data and compute can ever empower a model to become sentient,
perform human-like reasoning, or display superintelligence.

2. What is Al? A Mathematical View

The term artificial intelligence (AI) has become a “suitcase term” that is used to refer to a wide
variety of techniques and approaches ranging from statistical regression models to deep neural
networks (DNNs) and large language models (LLMs) [2]. Mathematically, however, all of these
approaches reduce to functions, which are a set of rules for converting an input to an output.
Even more specifically, these rules can be coded into a computer program which may have
some random elements (like an electronic slot machine) but is still only doing what it has been
specifically programmed to do.

(a) Key Components of Al Models

Before we get into the definition of Al, we first observe that a precondition of using Al is that
everything is represented as numbers, whether it is text, images, audio, or video. Anything that
can be stored on a computer can be represented in this way. Most LLMs use tokenization wherein
text is split into smaller units (tokens) that are then mapped to numerical representations. For
instance, the title of this article would be represented as the vector [3957, 433, 23088, 311, 71695,
15592, 304, 198, 74137, 7813, 14849, 15264, 30] by GPT-4.2 There is a whole field of research on how
to best represent different types of data numerically, but we will not delve into that here. For our
purposes, we assume that all the data is represented numerically. If we write x € Rd, this indicates
that the data z consists of d (real-valued) numbers, and we refer to x as a vector in RY,

Model Selection A key step in Al is model selection (such as a deep neural network), including
hyperparameter selection (such as the number of transformers and their characteristics). These
choices impact the flexibility and complexity of the model. Every Al model reduces to a

1https ://community.openai.com/t/incorrect-count-of-r-characters—in-the-word-strawberry
thtps ://tiktokenizer.vercel.app/?model=cl100k_base
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mathematical function f that takes data (such as a picture) as input and produces an output (such
as a label for the picture). The simplest model is a linear model which would be something like

f(z)=ax +0b, (2.1)

where z is the input and a and b are model parameters (also known as weights) that will be
learned from the training data. The mathematical functions are generally simple, consisting of
basic arithmetic operations (such as addition, multiplication, exponentiation) applied to the input
data. Equation (2.1) is the general form of the model, and it is not specific until a and b are
specified. Major advances have been made in Al by developing more sophisticated models, such
as large language models (LLMs), that can capture complex patterns in data. We discuss different
choices of f, from linear regression to large language models, in section 2(b).

Model Parameters Every model comes with a set of parameters 6 € R” that define its specific
form. These may also be referred to as weights. In eq. (2.1), for instance, 6 = [a, b] € R? are the
parameters that need to be learned from the training data. The training process determines the
parameters 6 and thus the specific form of the model f. For instance, a learned version of eq. (2.1)
might be

f(z) =25z + 1.0, 2.2)

where we have filled in @ = 2.5 and b = 1.0 from training. The number of parameters in a model
can be incredibly large. The open-source Llama 3 LLM models from Meta have from 405 billion
parameters [3]; some commercial Al models are rumored to have trillions of parameters. Once
the model parameters are learned via model training, the AI model is fully specified.

Model Training The parameters § are learned from data via mathematical optimization. In its
simplest form, this involves minimizing a loss function on a set of n training examples of the
form (x(i),y(i)) for i=1,2,...,n. Here, each () is some example input (like an image or a
sequence of words represented as tokens) and the corresponding ¥ is the correct output (like
a label “cat” or the predicted next token in the sequence). In general, modern Al systems require
massive amounts of training data, often on the order of billions or trillions of training samples.
For example, the FineWeb dataset from Hugging Face has been used to train LLMs and contains
15 trillion tokens of text data (equating to about 44 TB) [4].

Given a model f, the training data is used to learn parameters 6 € R? such that the model
output f(m(i)) is as close as possible to the desired output y( by some metric, which we refer
to as the loss function, £. In other words, the loss function serves to quantify how close the model
output is to the desired output. The choice of loss function £ is crucial and important with respect
to the alignment problem in Al; we delve deeply into this topic in the discussions of the challenges
in using Al insection 4(d).

What we ultimately seek is the parameters 6 that produce the lowest overall loss across all
training examples, mathematically stated as

ngnie (1)@, (2.3)
i=1

where ¢ depends on the parameters (or weights) 6. Popular loss functions include mean squared
error (MSE) and cross-entropy. Solving this problem can be extremely difficult, and many of the
innovations in AI over the last two decades have been in the area of optimization. At a high
level, the training takes the form of looking at each example, determining its loss, tweaking the
parameters 6 to decrease that loss, and repeating this process until we find a set of parameters
that overall approximately minimizes eq. (2.3). The process illustrated in fig. 2, where we view
each parameter 6; as a knob to be adjusted.

Model training is not always a single step or single objective function. It is possible to partially
optimize different aspects of the model and to use different datasets with different objectives.
It is also common to take a base model of some sort and then specialize it to a specific set
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Figure 2. A mathematical view of Al as a function f that takes an input = and produces an output f (). The function f
depends on a set of parameters @ that are learned from data. The learning process is shown in green. For each training
sample (z(?),y(?)), we compute f(z(*)), compare that to y(*), and then slightly adjust the parameters 6 in such a
way that the next time we see z(®), we will produce an output closer to (%),

of tasks. This might mean fixing all but a couple of layers of a neural network and retraining
those layers on a new dataset. Alternatively, it may mean small adjustments to all the existing
model parameters based on a few specific examples. We discuss this further in the discussion of
alignment in section 4(d).

Inference Once we have learned (or perhaps relearned) the parameters ¢ from the training data,
given a new input =, we can compute the output f(x). This is known as inference. Although it may
not be entirely obvious when using LLMs (which we discuss in more detail later on), inference is
simply evaluating a mathematical function. One limitation of most current Al models is that they
do not learn on the fly. Instead, they require some form of retraining on new data to update their
parameters.

(b) Examples of Machine-Learning and Al Models

Classic Machine Learning Models There are numerous classic machine learning models that fit
into the framework above. For instance, a statistical linear regression model says that the function is
of the form f(z) = Z;‘l:1 a;jr; + b, where x; is the jth component of the input vector z € R?. The
model parameters, § = [aq, ag, ..., aq, b], are learned from data. There are numerous variations
such as logistic regression. Other classical models include support vector machines, decision trees,
and random forests. These models are in still in frequent use and have many benefits such as

interpretability.

Physics-Based Models The general definition of an AI model presented in section 2(a)
incorporates parameterized physics-based models. In this case, f is a function that is derived from the
laws of physics but has a few adjustable parameters, §, that are learned from data. For instance,
numerical weather forecasting models are based on the laws of physics. In this case, the function
f is a complex simulation of the physical system, but it depends on certain parameters that are
learned using prior weather data to adjust the parameters of the model. This is referred to as data
assimilation. Many computational scientists credibly boast of having done “AI” for decades in the
form of parameter estimation for physics-based models.

Neural Networks A neural network is a model that alternates linear transformations and
nonlinear activation functions. For instance, a 2-layer neural network can be expressed as:

f(ac) IU(WQO'(Wlx + bl) + bg).

Here, o is a nonlinear activation function such as the sigmoid function. The model’s parameters
are weight matrices W1 and W5 and bias vectors b1 and b>. There are many hyperparameters such



as the number, type (e.g., convolutional), and size of each layer. Although neural networks have
been around since the 1950s, their popularity exploded in the 2010s with the advent of deep neural
networks (DNNs).

Large Language Models A large language model (LLM) is a special type of DNN that is trained
to predict the next token (think of this as a word) in a sequence [5]. The 6 parameters in this case
represent the weights and biases of the neural network. The input sequence is called the context,
and it’s important to note that the position of each token is also encoded. The next-to-last step
of an LLM is producing a probability distribution over the vocabulary for the next token, and
the final step uses a random number generator to sample from this distribution. The token is
appended to the context, and the process is repeated to produce the next token. The maximum
context length determines how many previous tokens can be incorporated. The GPT-2 model in
2019 had a maximum context length of 1024 tokens, whereas today’s models have maximum
context lengths of 100,000 to 1 million tokens. In other words, the input to an LLM is a vector €
{1,2,..., p}d where p is the number of distinct tokens, typically 0(105), and d is the maximum
context length, typically O(10°) to O(10%).

Training of an LLM consists of two phases. Pre-training focuses on learning general token
patterns, usually based on training data that includes the entirety of the Internet [4]. This step
generally takes several months on a huge cluster of GPUs. Post-training focuses on teaching the
model to interact in a conversational manner, often with a goal of adjusting the interaction style
of the LLM [6]. Post-training uses many fewer examples (painstakingly crafted by humans) and
makes relatively small changes to the learned DNN as compared to the pre-training. Post-training
usually takes just a few days. This last step can be repeated as needed to further refine the model.
Once these two phases are completed, the model, f, and its parameters, 6, are fixed.

Even with a fixed model, it is possible to adjust its behavior via the system prompt, which is
prepended to the user input [7]. In other words, even though the model and parameters are
fixed, the input is preprocessed by the system in such a way that the LLM response may alter
dramatically.® In a sense, the system prompt is another parameter of an LLM. An example of a
very basic system prompt, user prompt, and LLM sequence of outputs is shown in fig. 3; this
image also illustrates how the input is appended after each token is generated.

Input 2
Input 1

‘Provide‘ brief‘ answersH What‘ is‘ the‘ ent‘om‘ology‘ of‘

|
1

‘ «

‘ the‘ word‘ admire‘? From‘ Latin‘ admir‘ari‘ = to‘ Wonder‘

Output 1 Output 2

”» »

at

‘ at (‘ad‘ « +‘ mir‘ari‘ « to‘ wonder ”).‘

Figure 3. An LLM generates a sequence of tokens (demarcated by blue lines, with spaces indicated as gray dots) based
on the system prompt (yellow) and user input (input). The output tokens (gray) are generated one at a time, with each new
token appended to the input for the next token generation. For example, the first output token is generated based on the
system prompt and user input. The second output token is generated based on the system prompt, user input, and the
first output token. This process continues until an end condition is met, such as reaching a maximum number of tokens or
generating a special end-of-sequence token.

3Reposi‘cory of system prompts: https://github.com/asgeirtj/system_prompts_leaks/.
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Al Systems Many Al systems comprise a collection of tools. One form this may take is a mixture
of experts (which may be implemented as one massive model). DeepSeek uses such an architecture
[8], as does GPT-5. Many Al systems employ multiple distinct models [9]. For instance,
ChatGPT calls DALL-E to generate images based on text prompts. As another example, Google’s
AlphaProof, which achieved gold medal performance on the 2025 International Mathematics
Olympiad, combines Al and a symbolic reasoning engine [10]. Sentry-type systems can be used
to monitor and filter the output of LLMs.

(c) Mathematical Understanding

The choice of model can greatly impact the performance and capabilities of an Al system, and
these all reduce to choices of a mathematical function f. If the idea of a mathematical function
is unfamiliar, an alternative viewpoint is that the model is a computer program with a set of
constants that need to be determined. The structure of the model is fixed, and its parameters are
what is learned from data. After training, the parameters are hard-coded constants within that
program.

Even though the models are fixed mathematical functions or computer programs, some
models are stochastic, meaning that the function has random variables or, equivalently, the
computer program implementing the model calls a random number generator. This means that
each invocation of f(z) will produce a different output, even for the same input x. This may
lead to the idea that the function is doing something purposely different each time, but it is only
following its fixed programming.

Our discussion barely scratches the surface, but we conclude by bringing it back to a few
salient points about the mathematical foundations in fig. 4.

All data—from music to text to code to images—is encoded as se-
quences of numbers.

Every AI model can be represented as a mathematical function, which
in turn can be expressed as a computer program.

The parameters of the model are learned from training data, based on
a specified loss function.

Even if a program employs randomness, it is still following a set of
preordained instructions.

N N S S e e

Figure 4. Mathematical Foundations of Al

3. Potential Benefits of Al in Safety-Critical Systems

Although AI must be approached with appropriate caution, there are compelling reasons to
consider its integration into safety-critical systems. Our motivating applications (see fig. 1) focus
primarily on Al in the sense of machine learning, and most deployed systems use DNNs.

*https://openai.com/index/gpt-5-system—card/
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(a) Learning Non-Physical Models

Al can be used to model complex systems that have no known physical model. This has been
particularly true for image recognition tasks where one might ask what is the physical model
that indicates a cat is in a picture? The DNN known as AlexNet sparked a revolution in
image processing when it surpassed all standard models and won the ImageNet competition
in 2012 [11].

In the case of autonomous vehicles, Al can learn to recognize patterns in the visual and lidar
image returns to determine its current environment, including tracing the continuity of objects
like nearby cars over time, reading traffic signs, and detecting pedestrians. It can also be used for
control (executing trajectory) and motion planning (setting trajectory). The latest developments
in fully self-driving cars is so called end-to-end learning where a single DNN is trained to map
from raw sensor data to steering and acceleration commands [12,13].

In medical imaging, there is already a long history of using deep learning in domains such
as radiology where it outperforms hand-crafted features (which can be thought of as akin to
physics-based models) for image analysis [14]. These are often directly integrated into hardware
and software platforms from vendors such as GE Healthcare; the FDA has approved over 1000
Al-enabled medical devices, 75% of which a re in the domain of radiology.®

In weather forecasting, Al can learn certain phenomena that are difficult for traditional
physics-based modelling to capture; for instance, precipitation nowcasting (0-6 hours forward)
can be difficult for traditional models and deep learning has shown promise in this area [15].

(b) Increased Automation

Fully autonomous (level 5) driving has many potential benefits. Short-term, beyond making
the task less mundane, it can alleviate shortages of human drivers in long-haul trucking and
enable low-cost rides to seniors and other home-bound individuals. Longer-term, it could entirely
change the way we view transportation, parking, city planning, and much more. As driverless
cars log more and more miles of driving, initial results further indicate that they are safer than
human drivers, including in comparison to vehicles with advanced safety systems [16], though
this work has not yet been peer-reviewed [17].

The move to Al in radiology is strongly motivated by a severe shortage of radiologists [14,18].
Since human radiologists have an overwhelming workload, their ability to consistently produce
accurate diagnoses can be compromised. Ultimately, the use of Al in medical imaging has the
potential to allow human specialists such as radiologists to focus their valuable time on the most
difficult diagnostic cases.

(c) Enhanced Speed Compared to Traditional Approaches

A traditional numerical weather forecasting model involves coupling nonlinear partial
differential equations that describe atmosphere and ocean dynamics, combined with data
assimilation techniques to incorporate real-time observations. Examples include the Global
Forecast System (GFS) from U.S. National Oceanic and Atmospheric Administration (NOAA)
and the IFS (Integrated Forecasting System) from the European Centre for Medium-Range
Weather Forecasts (ECMWEF). These physics-based models typically run for hours on large
supercomputers to produce forecasts that extend out 10-16 days. In contrast, AI models can
generate forecasts in a fraction of the time, usually minutes, making them more suitable for
real-time applications. There are Al models that do not directly encode physics information,
such as Huawei’s Pangu-Weather [19] and Google’s GenCast [20], and those that do, such as
NVIDIA’s FourCastNet [21] and Google’s GraphCast [22]. By many metrics, Al models’ predictive
capabilities are on par with traditional physics-based numerical weather models [19,23,24],

5https ://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-
enabled-medical-devices
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though numerical models still have the advantage of being grounded in established physical
principles.

4. Limitations of Al in Safety-Critical Systems

The rosy picture outlined above in section 3 is incomplete without a sober assessment of the
costs and limitations of Al. Even though Al systems can be impressively effective at certain tasks,
the best way to think of them is as very complex statistical models that are trained to mimic
the data they have been given. LLMs have been famously referred to as stochastic parrots [25]:
they are simply repeating back patterns and structures from their training data, without any
understanding of the meaning, consistency, or veracity of the information.

(a) Opaque Understanding of the World

A major issue with Al'in terms of safety is that the models are opaque. Even if we know the model
structure (a neural net with specified number of layers, layer types, and sizes) and its parameters
(the weights and biases), its decision making process remains elusive. Trial and error is required
to determine the limits of advanced Al models.

For example, a powerful feature of neural networks is that they can learn almost any process
with high precision [26]. Unfortunately, this strong prediction ability does not translate to
understanding the underlying function. Recent experiments have shown, for example, that an
Al system failed to learn the laws of motion of planets from observation data even though it is
very good at predicting the planets” orbits [27].

Generative Al methods are generally brittle in the sense that imperceptible changes in the
inputs can lead to significant differences in the outputs. Several papers have demonstrated
image classification tasks where small changes, imperceptible to humans, can lead to completely
different classifications by AI models [28-30]. Generally, the models will learn the simplest
possible indicator from the data they are trained on, and it may not be what a human would
expect [31,32]. Minor changes in sensing equipment (a different lidar system in a self-driving car
or a different MRI machine in a hospital) may confound models trained on the outputs of different
equipment, without the model or user realizing that anything has changed.

Some recommend using a measure of confidence to augment predictions. However, Al models
are infamous for high confidence in wrong answers [33]. The “uncertainty estimates” that models
produce are not statistically valid measures of uncertainty but instead heuristics. For instance,
one popular heuristic in image classification is based on the weights in the last layer of the neural
network where a higher weight for a particular class indicates more confidence. There are many
more sophisticated methods, but few come with guarantees [34].

Some models have been trained to “explain” their answers, but these explanations are not
grounded in the model’s reasoning process but rather post-hoc rationalizations with dubious
connection to reality [35,36].

Another issue is that completely different models can perform identically on the development
(training, holdout, and validation) data but have distinct safety issues in real-world deployment.
As argued by [37], “The incomprehensibility of a model and its functional insufficiencies is a
safety concern as it limits this safety argumentation.”

Understanding why the models make the decisions they do is an on-going topic of
research [31]. For instance, a recent paper has managed to mathematically unravel and predict
the outputs of a specific (and relatively elementary) method of generative Al for images, showing
that it has memorized image patches in a particular way [38].



(b) Encounters with Data Outside of the Training Distribution

Al systems generally perform well on inputs that are similar to their training data (in
distribution). The problem is when they encounter inputs that are different from their training
data (out of distribution, or OOD) [39].

In the case of autonomous vehicles, in-distribution is referred to as the operational design
domain (ODD, a confusing acronym given its similarity to OOD). One issue is that the training
data may not include all possible scenarios that a vehicle might encounter in the real world.
The advent of electric scooters like Lime and Bird changed traffic dynamics and were not
well represented in earlier training data [37]. Another issue is that auto sensors age and this
leads to distributions shifts over time, even though seemingly nothing has changed in the
system [37]. More generally, it is impossible to foresee every possible scenario, such as pedestrians
in Halloween costumes or even just differences due to changes in fashion in clothes, cars, bikes,
etc. The ODD for an autonomous vehicle cannot be specified in arbitrary detail because it is too
complex [37].

The issue is that it is impossible to determine when an input is OOD. There are a wide variety
of methods that attempt to detect OOD inputs, but they are fundamentally flawed because the
space of possible inputs is exponentially vast [40]. Detecting OOD inputs is — by definition —
impossible via standard supervised learning methods such as deep learning since it would require
examples. Measuring distance from the training data is also problematic since the representation
of data is not necessarily in terms of the features that are important for classification.

(c) Insatiable Appetite for Data and Compute

Al systems require vast amounts of data to learn and make accurate predictions. This insatiable
appetite for data can be a significant barrier to their deployment, especially in safety-critical
applications where data may be scarce, expensive to obtain, or subject to privacy concerns.

Even when data is readily available, it is a myth that more data and compute will always
lead to better AI performance. While having more data can help improve model accuracy and
generalization, it is not the only factor that determines success. The quality of the data, the
relevance of the features used for training, the appropriateness of the model architecture, and
the choice of loss function all play crucial roles in the effectiveness of Al systems.

There is generally no easy to “fix” AI models when they give a wrong answer. The typical
answer is to retrain the model with more data (especially data for the specific problem that it
got wrong), but this frequently fails to yield general improvements. We are reminded of these
limits acutely when we see persistent problems with large language models in answering simple
questions such as the the number of r’s in strawberry or b’s in blueberry®.

Perhaps more importantly, it is impossible to measure everything that contributes to decision-
making in a safety-critical situations. The doctor who surmised that my liver problem was caused
by a supplement went beyond test results. He talked to me, discovered I was generally in good
health, and was able to reason that it must be something I was ingesting that was causing this
abnormal reading. Ceasing all supplements led to a return to normal liver function, and we were
quickly able to determine that the supplement was the cause. This all seems quite simple, yet
multiple doctors were flummoxed by my case despite gathering copious amounts of data.

Consider our example of autonomous vehicles. The Al has pixels (from cameras) and point
clouds (from lidar) as well as general vehicle information (velocity, acceleration, position on the
street, etc.) as its inputs. In contrast, a human driver has a much richer set of sensory inputs
and higher-level understanding of the environment. A human driver can consider weather, road
features, other motorized vehicles, bikes, scooters, pedestrians, traffic signals and signs, lane
markings, and a multitude of other details without conscious thought [37].

®These have since been fixed, but examples of the early failures in ChatGPT5 abound; see, e.g., https://kieranhealy.
org/blog/archives/2025/08/07/blueberry-hill/.
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In the case of AI weather prediction, we would need to collect data around the globe (all
latitudes, longitudes, altitudes, and times) in order to have anything approaching fully specified,
and that’s assuming that we have instrumentation to measure all factors, including particulates.

We can never have all the data, and the data doesn’t have all the answers anyway:.

(d) Alignment Problem

Perhaps the most serious problem with Al in safety-critical systems is the difficulty in aligning
the AI’s objectives with the user’s intent. As discussed in section 2(a), one of the key factors in
Al is defining the loss function, ¢(f(x),y) that scores the model output f(x) with respect to the
desired output y. One problem with the loss function is that it requires quantifying the mismatch
of between f(x) and y, which may not be possible for subjective cases. This difficulty in matching
the AI’s functionality with the user’s intent is often referred to as the alignment problem in AI [1].
The trouble with alignment is that there are many factors to be considered and they are not
of equal importance. First, the training data is not a valid statistical sample of the world. Second,
critical safety events are rare. Third, not all mistakes are equally bad: misclassifying a bus as a
truck does not have nearly the safety risk of classifying a pedestrian as a part of the road [37].

¢ Autonomous Vehicles: An Al model for self-driving cars has many factors to consider,
including safety, fuel efficiency, and passenger comfort. It is extremely hard to reduce
these to quantifiable metrics, due to both the multitude of possible scenarios and the
subjective nature of human preferences. As one autonomous vehicle company CEO put
it, the AI “will do wildly inappropriate things in the edge cases” [41].

* Medical Image Analysis: Suppose an Al system is trained to maximize diagnostic
accuracy on historical patient data. If the loss function only penalizes incorrect diagnoses,
it may ignore the cost of false positives (unnecessary treatments) or false negatives
(missed diseases), which have very different real-world consequences.

* Weather Forecasting: Al systems are often used to predict weather patterns and events.
Should the loss function prioritize accuracy in temperature predictions, precipitation,
wind speed, or all of these equally? Should it give point-wise predictions (i.e., a specific
temperature) or a range (between 60 and 65 Fahrenheit)?

As we expect Al to do ever-more complicated tasks, the alignment problem is the most critical
practical challenge. The “right” balance surely depends on a myriad of factors, even if we limit
ourself to measurable data.

5. Recommendations for Using Al in Safety-Critical Systems

There are reasons to use Al in safety-critical systems, as discussed in section 3, but there are
also significant limitations, as discussed in section 4. Taking advantage of the benefits without
exposing oneself to the risks requires mitigations, and there are many recommendations in the
literature. For example, researchers from Al companies Google Brain and OpenAl laid out some
foundations in 2016, including strategies for mitigating unintended AI behaviors due to the
wrong loss function [42]. Additionally, the National Institute of Standards and Technology (NIST)
has published a comprehensive Al Risk Management Framework [43].

We consider the recommendations in terms of the different stakeholders of Al systems,
including system developers (Al engineers), the consumers of Al products (car manufacturers,
hospitals, weather services), and the end-users (drivers, doctors, government officials). It’s
important that each group have appropriate knowledge of Al’s capabilities and limitations. The
important role of government and regulatory bodies is outside the scope of this discussion, but
we recommend the recent call to regulatory action from leading Al researchers [44].



Al System At a basic level, Al system developers should draw from a variety of models,
Developers  considering appropriateness for the task, constraints on costs, and availability of
training data. In the vast majority of use cases, mature and less computationally
demanding AI technologies, such as random forests or deep neural networks,
are sufficient. Once the model class is selected, the loss function still needs to be
specified, and there are generally numerous factors to consider that are not easily
quantifiable; see, for instance, the factors that Waymo recommends considering
for autonomous vehicles [45]. When fixing problems (such as counting the number of r’s in
strawberry), the Al engineers should be mindful of whether the fit is specific (just fixing the
precise problems that have been encountered) or general (improving the model’s performance
in a broader sense).

=  ChatGPT ~ @

Please generate a picture of a clock

showing the time as 2:40pm.

Figure 5. An example of generative Al’s failure to show the correct time on a clock, as attempted by the author on August
27, 2025, using the free version of ChatGPT-5. The problem is that most images in the training data show the time of
10:10. This test was inspired by a conversation on LinkedIn.®

AI Product Consumers need to be wary of the hype surrounding AL These systems can be
Consumers excellent at performing tasks for which they have been trained, such as LLMs
generating plausible text and images. However, LLMs are not easily trained to
produce correct or truthful answers — they simply generate text or an image
based on patterns in their training data. For instance, fig. 5 shows an example of
a failed attempt to get ChatGPT-5 to draw a clock showing 2:40 pm; instead, it
shows 10:10 am.

Consumers should also be aware of Al systems’ inability to generalize beyond their training
data, i.e., out of distribution (OOD). The problem is that there is no automated way to flag
OOD inputs beyond human oversight; even then, OOD data may be due to imperceptible




contamination by a different-than-expected noise distribution due to some minor equipment
tune-up or other changes; this is the brittleness of Al systems.

Ideally, consumers should have intimate knowledge of the data on which the systems have
been trained and tested as well as the way that “loss” has been evaluated so that they can judge
the risk of deployment in various situations. For instance, an auto manufacturer or medical device
company should be able to verify that the model they are using has been trained specifically
for the equipment that they are using and the scenarios they envision. Weather services need to
know if an AI model has been optimized for short-term or long-term forecasts, for temperature
or precipitation, and so on.

Al End-users need to understand that Al systems are not infallible and should not
End-Users pe blindly trusted. At this point in time, all autonomous vehicle companies
employ armies of humans that remotely assist when the vehicles encounter

w obstacles that they cannot navigate around on their own [46]. Similarly, a driver
J employing the self-driving feature of a car (with driver attention, L2 or L3) will
‘\T generally develop knowledge about the Al's weaknesses, including when the

sun is at a low angle, going around certain sharp curves, areas with inadequate
lane markings, or navigating in inclement weather. A doctor using an Al diagnostic tool should
always consider the Al's recommendation in the context of how unusual the situation is. If it’s
a condition that the doctor is unfamiliar with, that may also be the case of the Al even if it does
not say so (since Al systems are notorious for not knowing what they don’t know — the OOD
problem). Government officials deciding whether to call for emergency evacuations should be
aware of what type of model is being used, its past performance and how well it’s been aging
(these models tend to degrade over time), and whether or not it is a single model or an ensemble
of models (which generally perform better).

6. Conclusions

We hope that this work has given you a clear-eyed view that Al is a specific function (series of
mathematical operations) that is shaped by the choice of model (such as a deep neural network)
along with its training data and selection of loss metric. Even if newer models such as LLMs
require many more mathematical operations (including some calls to random number generators)
and parameters, they are still functions that cannot think, understand, reason, or have intent.

Testing and evaluation of systems in advance of deployment is standard in safety-critical
systems. What is different with Al is that continual monitoring is critical. The Al systems that have
been deployed to date in our prototype safety-critical systems (autonomous vehicles, medical
image analysis, and weather forecasting) have all faced failures in their encounters with real-
world tasks. Some efforts have been shut down, such as the self-driving car efforts of Uber and
General Motors [41]. The companies that have survived have made significant investments in
monitoring and ensuring that their behaviors are well aligned with desirable outcomes.

Even with these investments, there is significant room for improvement. Self-driving cars are
improving but still have major limitations in where they can operate. More specifically, recent
analyses of accident data in California shows that it is safer than human driving; however,
accidents occurred much more frequently “under dawn/dusk or turning conditions” [47]. Many
of these problems are subtle, requiring sleuthing to uncover. In medical imaging, there are calls for
better alignment of Al with patient outcomes rather than merely considering standard machine
learning metrics [48] as well as cautions in how they are evaluated [49]. In weather forecasting, Al
models have shown weaknesses according to certain metrics [50,51], which is generally a function
of which loss metric they were optimizing.

So, is Al safe for safety-critical systems? The answer is nuanced and depends on many factors.
There is a big difference between open Al models that can be evaluated by potential customers

8https ://www.linkedin.com/posts/varunvarma9l_chatgpt-always—-shows-the-time-as-1010-when-
activity—-7363817350510362625-7Dil


https://www.linkedin.com/posts/varunvarma91_chatgpt-always-shows-the-time-as-1010-when-activity-7363817350510362625-7Di1
https://www.linkedin.com/posts/varunvarma91_chatgpt-always-shows-the-time-as-1010-when-activity-7363817350510362625-7Di1

and regulatory bodies versus the closed models that are employed in many medical devices and
autonomous vehicles. There is also a big difference between Al systems that are used with human
oversight versus fully autonomous systems.

We have only scratched the surface of this important topic and cannot possibly do it justice in a
short article. Google DeepMind has recently produced an extensive 100+ page report on the safety
of artificial general intelligence (AGI) [52]. We hope, nonetheless, that this article has provided a
useful overview of some key concepts and issues for Al in safety-critical systems.
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